Source code for plfit.plfit_py

# intended to implement a power-law fitting routine as specified in.....
# http://www.santafe.edu/~aaronc/powerlaws/
#
# The MLE for the power-law alpha is very easy to derive given knowledge
# of the lowest value at which a power law holds, but that point is 
# difficult to derive and must be acquired iteratively.

"""
Pure-Python version of plfit.py
===============================

A *pure* python power-law distribution fitter based on code by Aaron Clauset.
This is the slowest implementation, but has no dependencies.

Example very simple use::

    from plfit_py import plfit

    MyPL = plfit(mydata)
    MyPL.plotpdf(log=True)

"""

import time
import random
import math

[docs]class plfit: """ A Python implementation of the Matlab code http://www.santafe.edu/~aaronc/powerlaws/plfit.m from http://www.santafe.edu/~aaronc/powerlaws/ See A. Clauset, C.R. Shalizi, and M.E.J. Newman, "Power-law distributions in empirical data" SIAM Review, 51, 661-703 (2009). (arXiv:0706.1062) http://arxiv.org/abs/0706.1062 The output "alpha" is defined such that :math:`p(x) \sim (x/xmin)^{-alpha}` """ def __init__(self,x,**kwargs): """ Initializes and fits the power law. Can pass "quiet" to turn off output (except for warnings; "silent" turns off warnings) """ neg = [i<0 for i in x] if any(neg) > 0: print "Removed %i negative points" % (sum(neg)) x = [i for i in x if i > 0] self.data = x self.plfit(**kwargs)
[docs] def alpha_(self,x): """ Create a mappable function alpha to apply to each xmin in a list of xmins. This is essentially the slow version of fplfit/cplfit, though I bet it could be speeded up with a clever use of parellel_map. Not intended to be used by users.""" def alpha(xmin,x=x): """ given a sorted data set and a minimum, returns power law MLE fit data is passed as a keyword parameter so that it can be vectorized """ x = [i for i in x if i>=xmin] n = sum(x) divsum = sum([math.log(i/xmin) for i in x]) if divsum == 0: return float('inf') # the "1+" here is unimportant because alpha_ is only used for minimization a = 1 + float(n) / divsum return a return alpha
[docs] def kstest_(self,x): def kstest(xmin,x=x): """ given a sorted data set and a minimum, returns power law MLE ks-test w/data data is passed as a keyword parameter so that it can be vectorized The returned value is the "D" parameter in the ks test... """ x = [i for i in x if i>=xmin] n = len(x) if n == 0: return float('inf') divsum = sum([math.log(i/xmin) for i in x]) if divsum == 0: return float('inf') a = float(n) / divsum cx = [float(i)/float(n) for i in xrange(int(n))] cf = [1-(xmin/i)**a for i in x] ks = max([abs(a-b) for a,b in zip(cf,cx)]) return ks return kstest
[docs] def plfit(self,nosmall=True,finite=False,quiet=False,silent=False, xmin=None, verbose=False): """ A pure-Python implementation of the Matlab code http://www.santafe.edu/~aaronc/powerlaws/plfit.m from http://www.santafe.edu/~aaronc/powerlaws/ See A. Clauset, C.R. Shalizi, and M.E.J. Newman, "Power-law distributions in empirical data" SIAM Review, 51, 661-703 (2009). (arXiv:0706.1062) http://arxiv.org/abs/0706.1062 nosmall is on by default; it rejects low s/n points can specify xmin to skip xmin estimation This is only for continuous distributions; I have not implemented a pure-python discrete distribution fitter """ x = self.data z = sorted(x) t = time.time() possible_xmins = sorted(set(z)) argxmins = [z.index(i) for i in possible_xmins] self._nunique = len(possible_xmins) if xmin is None: av = map(self.alpha_(z),possible_xmins) dat = map(self.kstest_(z),possible_xmins) sigma = [(a-1)/math.sqrt(len(z)-i+1) for a,i in zip(av,argxmins)] if nosmall: # test to make sure the number of data points is high enough # to provide a reasonable s/n on the computed alpha goodvals = [s<0.1 for s in sigma] if False in goodvals: nmax = goodvals.index(False) dat = dat[:nmax] possible_xmins = possible_xmins[:nmax] av = av[:nmax] else: print "Not enough data left after flagging - using all positive data." if not quiet: print "PYTHON plfit executed in %f seconds" % (time.time()-t) self._av = av self._xmin_kstest = dat self._sigma = sigma # [:-1] to weed out the very last data point; it cannot be correct # (can't have a power law with 1 data point). # However, this should only be done if the ends have not previously # been excluded with nosmall if nosmall: xmin = possible_xmins[dat.index(min(dat))] else: xmin = possible_xmins[dat.index(min(dat[:-1]))] z = [i for i in z if i >= xmin] n = len(z) alpha = 1 + n / sum([math.log(a/xmin) for a in z]) if finite: alpha = alpha*(n-1.)/n+1./n if n == 1 and not silent: print "Failure: only 1 point kept. Probably not a power-law distribution." self._alpha = 0 self._alphaerr = 0 self._likelihood = 0 self._ks = 0 self._ks_prob = 0 self._xmin = xmin return xmin,0 if n < 50 and not finite and not silent: print '(PLFIT) Warning: finite-size bias may be present. n=%i' % n # ks = max(abs( numpy.arange(n)/float(n) - (1-(xmin/z)**(alpha-1)) )) ks = max( [abs( i/float(n) - (1-(xmin/b)**(alpha-1))) for i,b in zip(xrange(n),z)] ) # Parallels Eqn 3.5 in Clauset et al 2009, but zeta(alpha, xmin) = (alpha-1)/xmin. Really is Eqn B3 in paper. #L = n*log((alpha-1)/xmin) - alpha*sum(log(z/xmin)) sl = sum([math.log(a/xmin) for a in z]) L = (n*math.log((alpha-1)/xmin) - alpha*sl) #requires another map... Larr = arange(len(unique(x))) * log((av-1)/unique(x)) - av*sum self._likelihood = L self._xmin = xmin self._xmins = possible_xmins self._alpha= alpha self._alphaerr = (alpha-1)/math.sqrt(n) self._ks = ks # this ks statistic may not have the same value as min(dat) because of unique() #if scipyOK: self._ks_prob = scipy.stats.kstwobign.sf(ks*numpy.sqrt(n)) self._ngtx = n if math.isnan(L) or math.isnan(xmin) or math.isnan(alpha): raise ValueError("plfit failed; returned a nan") if not quiet: if verbose: print "The lowest value included in the power-law fit, ", print "xmin: %g" % xmin, if verbose: print "\nThe number of values above xmin, ", print "n(>xmin): %i" % n, if verbose: print "\nThe derived power-law alpha (p(x)~x^-alpha) with MLE-derived error, ", print "alpha: %g +/- %g " % (alpha,self._alphaerr), if verbose: print "\nThe log of the Likelihood (the maximized parameter), ", print "Log-Likelihood: %g " % L, if verbose: print "\nThe KS-test statistic between the best-fit power-law and the data, ", print "ks: %g" % (ks) return xmin,alpha
[docs]def plexp(x,xm=1,a=2.5): """ CDF(x) for the piecewise distribution exponential x<xmin, powerlaw x>=xmin This is the CDF version of the distributions drawn in fig 3.4a of Clauset et al. """ C = 1/(-xm/(1 - a) - xm/a + math.exp(a)*xm/a) Ppl = lambda(X): 1+C*(xm/(1-a)*(X/xm)**(1-a)) Pexp = lambda(X): C*xm/a*math.exp(a)-C*(xm/a)*math.exp(-a*(X/xm-1)) d=Ppl(x) d[x<xm]=Pexp(x) return d
[docs]def plexp_inv(P,xm,a): """ Inverse CDF for a piecewise PDF as defined in eqn. 3.10 of Clauset et al. """ C = 1/(-xm/(1 - a) - xm/a + math.exp(a)*xm/a) Pxm = 1+C*(xm/(1-a)) pp = P x = xm*(pp-1)*(1-a)/(C*xm)**(1/(1-a)) if pp >= Pxm else (math.log( ((C*xm/a)*math.exp(a)-pp)/(C*xm/a)) - a) * (-xm/a) #x[P>=Pxm] = xm*( (P[P>=Pxm]-1) * (1-a)/(C*xm) )**(1/(1-a)) # powerlaw #x[P<Pxm] = (math.log( (C*xm/a*math.exp(a)-P[P<Pxm])/(C*xm/a) ) - a) * (-xm/a) # exp return x
[docs]def pl_inv(P,xm,a): """ Inverse CDF for a pure power-law """ x = (1-P)**(1/(1-a)) * xm return x
[docs]def test_fitter(xmin=1.0, alpha=2.5, niter=500, npts=1000, invcdf=plexp_inv, quiet=True, silent=True): """ Tests the power-law fitter Examples ======== Example (fig 3.4b in Clauset et al.):: xminin=[0.25,0.5,0.75,1,1.5,2,5,10,50,100] xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=xminin,niter=1,npts=50000) loglog(xminin,xmarr.squeeze(),'x') Example 2:: xminin=[0.25,0.5,0.75,1,1.5,2,5,10,50,100] xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=xminin,niter=10,npts=1000) loglog(xminin,xmarr.mean(axis=0),'x') Example 3:: xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=1.0,niter=1000,npts=1000) hist(xmarr.squeeze()); # Test results: # mean(xmarr) = 0.70, median(xmarr)=0.65 std(xmarr)=0.20 # mean(af) = 2.51 median(af) = 2.49 std(af)=0.14 # biased distribution; far from correct value of xmin but close to correct alpha Example 4:: xmarr,af,ksv,nxarr = plfit.test_fitter(xmin=1.0,niter=1000,npts=1000,invcdf=pl_inv) print("mean(xmarr): %0.2f median(xmarr): %0.2f std(xmarr): %0.2f" % (mean(xmarr),median(xmarr),std(xmarr))) print("mean(af): %0.2f median(af): %0.2f std(af): %0.2f" % (mean(af),median(af),std(af))) # mean(xmarr): 1.19 median(xmarr): 1.03 std(xmarr): 0.35 # mean(af): 2.51 median(af): 2.50 std(af): 0.07 """ sz = niter xmarr,alphaf_v,ksv,nxarr = ([0]*sz,)*4 for i in xrange(niter): randarr = [random.random() for k in xrange(npts)] fakedata = [invcdf(r,xmin,alpha) for r in randarr] TEST = plfit(fakedata,quiet=quiet,silent=silent,nosmall=True) alphaf_v[i] = TEST._alpha ksv[i] = TEST._ks nxarr[i] = TEST._ngtx xmarr[i] = TEST._xmin return xmarr,alphaf_v,ksv,nxarr